Please select your home edition
Edition
Feb-Nov23 Leaderboard Revolve2

Endangered vaquita remain genetically healthy even in low numbers, new analysis shows

by NOAA Fisheries 30 Oct 2020 15:48 UTC
Researchers search the Gulf of California for some of the last remaining vaquita, a highly endangered species of small porpoise © NOAA Fisheries

The critically endangered vaquita has survived in low numbers in its native Gulf of California for hundreds of thousands of years, a new genetic analysis has found. The study found little sign of inbreeding or other risks often associated with small populations.

Gillnet fisheries have entangled and killed thousands of vaquitas in recent years and scientists believe that fewer than 20 of the small porpoises survive today. The new analysis demonstrates that the species' small numbers do not doom it to extinction, however, and so gives hope for the small remaining population. Vaquitas have long survived and even thrived without falling into an "extinction vortex," the new study showed. That's a scenario in which their limited genetic diversity makes it impossible to recover.

"The species, even now, is probably capable of surviving," said Phil Morin, research geneticist at NOAA Fisheries' Southwest Fisheries Science Center and lead author of the new study published this week in Molecular Ecology Resources. "We can now see that genetic factors are not its downfall. There's a very good chance it could recover fully if we can get the nets out of the water."

Small but stable populations

An increasing number of species in addition to the vaquita have maintained small but stable populations for long periods without suffering from inbreeding depression. Other species include the narwhal, mountain gorilla, and native foxes in California's Channel Islands. Long periods of small population sizes may have given them time to purge harmful mutations that might otherwise jeopardize the health of their populations.

"It's appearing to be more common than we thought that species can survive at low numbers over long periods," said Morin, who credited the vaquita findings to genetic experts around the world who contributed to the research.

The idea that vaquitas could sustain themselves in low numbers is not new. Some scientists suspected that more than 20 years ago. Now advanced genetic tools that have emerged with the rapidly increasing power of new computer technology helped them prove the point.

"They've survived like this for at least 250,000 years," said Barbara Taylor, research scientist at the Southwest Fisheries Science Center. "Knowing that gives us a lot more confidence that, in the immediate future, genetic issues are the least of our concerns."

Sequencing the Vaquita Genome

The new analysis examined living tissue from a vaquita captured as part of a last-ditch international 2017 effort to save the fast-disappearing species. The female vaquita tragically died, but its living cells revealed the most complete and high-quality genome sequence of any dolphin, porpoise, or whale to date, generated in collaboration with the Vertebrate Genomes Project.

Sequencing was led by Olivier Fedrigo, Jacquelyn Mountcastle, and Erich Jarvis at the Rockefeller University. "We felt it our moral duty to generate a high-quality reference of this species on the brink of extinction", said Jarvis. Only in recent years have advances in sequencing technologies and high-powered computers made such detailed reconstruction possible.

While the vaquita genome is not diverse, the animals are healthy. The most recent field effort in fall 2019 spotted about nine individuals, including three calves, within their core habitat. The robust calves suggest that inbreeding depression is not harming the health of these last vaquita. "These examples and others indicate that, contrary to the paradigm of an 'extinction vortex' that may doom species with low diversity, some species have persisted with low genomic diversity and small population size," scientists wrote in the new study.

The genetic data suggest that the vaquita's isolated habitat in the far northern Gulf of California has sustained roughly 5,000 vaquitas for around 250,000 years. The advent of gillnetting for fish and shrimp only a few decades ago drove vaquitas towards extinction, as they are incidentally caught in the nets.

More recently, Illegal gillnetting for totoaba, a fish about the same size and found in the same habitat as the vaquita, has compounded the losses. The practice has caused a catastrophic decline that is estimated as cutting the remaining population in half each year.

"Small numbers do not necessarily mean the end of a species, if they have the protection they need," Taylor said. "In conservation biology, we're always looking for risk. We shouldn't be so pessimistic. The sight of those three healthy calves in the water with their survivor mothers should inspire the protection they need to truly recover."

Related Articles

Entangled humpback whale successfully cut free
The response took several days and involved a broad array of agencies, organizations, and volunteers A humpback whale was entangled in fishing gear in Iliuliuk Bay, near the Port of Dutch Harbor, Alaska. Due to the efforts of NOAA, partners, and local trained volunteers, it was successfully cut free. Posted on 28 Apr
Gray Whale population abundance
Eastern North Pacific Gray Whale population increases after observed decline To understand how the eastern North Paci?c gray whale population is responding to changes in the environment following its recovery from low numbers due to commercial whaling, we study changes in abundance over time. Posted on 5 Apr
New research reveals diversity of Killer Whales
Long viewed as one worldwide species, killer whale diversity now merits more Scientists have resolved one of the outstanding questions about one of the world's most recognizable creatures, identifying two well-known killer whales in the North Pacific Ocean as separate species. Posted on 31 Mar
Where the Leatherbacks Roam
Leatherbacks commonly swim from the South and Mid-Atlantic Bights during the warmer months Scientists find evidence of critical feeding grounds for endangered leatherback turtles along the U.S. Atlantic coast by studying movement behavior with satellite tags. Posted on 30 Mar
Meet Makana
One of the first Hawaiian Monk Seal Pups of 2024 Hawai'i Marine Animal Response partnered with Kahuku Elementary School to name the first Hawaiian monk seal pup of O'ahu in 2024. Posted on 23 Mar
Marine heatwaves reshape ecosystem
Heatwaves are becoming more frequent and intense in our oceans A new study highlights marine heatwaves' complex and cascading effects on marine ecosystems. While some species may benefit from these changes, others are likely to struggle. Posted on 20 Mar
California Current ecosystem shows resilience
It is facing a strong 2024 El Niño event The 2023-2024 California Current Ecosystem Status Report shows an abundance of forage fish and a productive system fueled by upwelling. Posted on 19 Mar
Some research takes a lifetime
Researchers keep track of Northern Elephant Seals using flipper tags Long-term research under Marine Mammal Protection Act scientific research permits provides insight into northern elephant seal moms and pups. Posted on 17 Mar
Making strides in marine mammal research
NOAA Fisheries and partners celebrate the 50th anniversary of the Endangered Species Act 2023 marked the 50th anniversary of the Endangered Species Act. Under this law, NOAA Fisheries is responsible for the conservation and recovery of more than 160 endangered and threatened marine species—including many marine mammals. Posted on 12 Feb
NOAA Fisheries and BOEM release joint strategy
Part of a larger interagency effort to promote recovery of endangered species Today, NOAA Fisheries and the Bureau of Ocean Energy Management (BOEM) released a final joint strategy to protect and promote the recovery of endangered North Atlantic right whales while responsibly developing offshore wind energy. Posted on 26 Jan
GJW Direct - Yacht 2019 - FooterNoble Marine 2022 SW - FOOTERHyde Sails 2022 One Design FOOTER