Please select your home edition
North Sails 2021 Innovation - LEADERBOARD

WHOI-led study reveals sunlight can help dissolve oil into seawater

by The Woods Hole Oceanographic Institution 20 Feb 16:51 UTC
Slick of sunlight-altered oil floating on the Gulf of Mexico after 2010 Deepwater Horizon disaster. A team of WHOI researchers found that nearly 10% of oil floating on Gulf after spill dissolved into water by sunlight – a process called photo-dissolution © Cabell Davis III / Woods Hole Oceanographic Institution

The 2010 Deepwater Horizon oil spill was the largest marine oil spill in United States history. The disaster was caused by an explosion on the Deepwater Horizon oil rig, taking 11 lives and releasing nearly 210 million gallons of crude oil into the Gulf of Mexico.

Twelve years and hundreds of millions of dollars later, scientists are still working to understand where all this oil ended up, a concept known as environmental fate.

The most commonly discussed fates of oil spilled at sea are biodegradation (microorganisms consuming and breaking down the oil), evaporation (liquid oil becoming a gas), and oil stranding on shorelines.

A team of Woods Hole Oceanographic Institution (WHOI) researchers discovered that nearly 10 percent of the oil floating on the Gulf after the Deepwater Horizon disaster was dissolved into seawater by sunlight - a process called "photo-dissolution". The findings were published today in the paper "Sunlight-driven dissolution is a major fate of oil at sea" in Science Advances.

"The amount of oil that was transformed by sunlight into compounds that dissolved in seawater during the 2010 Deepwater Horizon spill rivals that of commonly accepted oil fates, like biodegradation and stranding on shorelines" said co-author Collin Ward, assistant scientist in WHOI's Marine Chemistry and Geochemistry Department.

"One of the most fascinating aspects of this finding is that it might impact our understanding of where else the oil is going, and whether the result is good or bad," said lead author Danielle Haas Freeman, Massachusetts Institute of Technology/WHOI Joint Program student. "If this sizable fraction of oil is being transformed by sunlight and is dissolving into seawater, that might mean that less oil is ending up in other places, like sensitive coastal ecosystems. On the other hand, we have to consider the impacts of the compounds on marine organisms before we can decide if the net result is positive or negative."

To arrive at this important finding, Freeman and Ward used custom-built light-emitting diode (LED) reactors to measure how the rate of this oil fate varies for different types of light, such as ultraviolet and visible light.

"The process of oil photo-dissolution has actually been known for over fifty years,'' said Ward. "But what's new here is our understanding how this process varies with light wavelength, which we determined using the LED reactors. This is the key piece of information that allowed us to estimate the importance of this process during a spill."

The novel measurements using the LEDs also provided an opportunity to determine which conditions were most important in controlling this process. The team created hypothetical spill scenarios with varying oil slick thicknesses, times of the year, locations around the world, and types of light. What they noticed was that some of these changing conditions mattered more than others.

"The importance of this process changes dramatically if you are looking at thin versus thick oil slicks," said Freeman. "We also found, contrary to popular belief, that this process is relevant in Arctic waters, a particularly important finding given the expected increase in cargo ship traffic and heightened risk of spills in that region. This kind of modeling is critical when forecasting spills and considering the impacts on marine ecosystems."

The notion that ocean surface oil could have a new fate is monumental for framing the future of oil spill studies and spill response tactics. It is currently unknown what the fate and potential toxicity of these sunlight-produced compounds are, posing a challenge in assessing the impacts of this oil fate. Freeman and Ward encourage the field to gravitate towards these gaps in knowledge.

"While our findings suggest that a substantial fraction of surface oil can dissolve into the ocean after sunlight exposure, a logical next step is to evaluate its persistence and potential harm to aquatic animals," Ward said.

Related Articles

When will Antarctica's ice come crashing down?
Researchers challenge their own assumptions to improve sea-level rise predictions As increased warming in Antarctica causes glaciers to retreat and shed their increasingly-unstable shelves, towering walls of ice are left looming high above the sea. Posted on 20 Nov
Can we use sound to build back reefs?
What does a healthy reef sound like? What does a healthy reef sound like? And can we use that knowledge to help save sick or endangered reefs? Posted on 13 Nov
Five essential ocean-climate technologies
It's hard to overstate how profound the ocean's role is when it comes to climate change It's hard to overstate how profound the ocean's role is when it comes to climate change. It has absorbed more than 90 percent of the heat caused by greenhouse gasses since the Industrial Revolution. Posted on 13 Nov
What happens to natural gas in the ocean?
Methane, the most abundant hydrocarbon in natural gas, is a potent greenhouse gas When news broke on September 26 that natural gas pipelines had ruptured under the Baltic Sea, the immediate-and appropriate-concern was the impact on the climate. Posted on 11 Oct
How to study an underwater earthquake from shore
Lessons from a successful hybrid Sentry expedition A magnitude 6 earthquake along the Gofar Transform Fault in the eastern Pacific Ocean shook the seafloor in April 2020, just when a WHOI-based science team predicted. Posted on 31 Aug
Seven ways you can be coral reef-safe
Lifestyle changes you can make to help corals in crisis Diving or snorkeling on a reef is your ticket to a dreamworld. Brilliant colors, fantastic shapes, and castle-like structures invite exploration, revealing bright flashes of fish and an infinite variety of life below the surface. Posted on 4 Jul
World's largest kelp map launched
By Woods Hole Oceanographic Institution and collaborators Kelp forests provide myriad benefits to nature and people in oceans around the world. They form the backbone of the ecosystems in which they are found, providing habitat and food for thousands of species. Posted on 13 Apr
The ocean twilight zone's role in climate change
WHOI releases report analyzing carbon sequestration in the mid-ocean region The ocean twilight zone, also called the mid-water or the mesopelagic, lies far beneath the sunlit surface waters, about 650 to 3,300 feet deep to be exact. Posted on 19 Feb
WHOI shares microplastic detection project details
Project gains additional funding, technologies to move towards a field-portable sensing system Microplastics are tiny plastic pieces that can be found in the ocean and atmosphere. Posted on 20 Jan
New ocean floats to boost global network
Partners team with low-carbon sailing vessel for major Atlantic deployment Woods Hole Oceanographic Institution (WHOI) and partners have joined together to launch approximately 100 new Argo floats across the Atlantic Ocean to collect data that supports ocean, Posted on 19 Dec 2021
Selden 2020 - FOOTERCure Marine - Cure 55 - FOOTEROcean Safety 2022 Service Offer - FOOTER