Please select your home edition
Edition
Leaderboard brokerage

Corals in the Red Sea offer long-term view of South Asian summer monsoon

by Woods Hole Oceanographic Institution 22 Apr 2019 01:15 UTC
Project Protect - Stony Coral Tissue Loss Disease (SCTLD) Interdiction © Force Blue

When it comes to understanding future climate, the south Asian summer monsoon offers a paradox. Most climate models predict that as human-caused global warming increases, monsoon rain and wind will become more intense but weather data collected in the region shows that rainfall has actually declined over the past 50 years.

A new study from Woods Hole Oceanographic Institution (WHOI) may help explain this discrepancy. Using chemical data from corals in the Red Sea, scientists reconstructed nearly three centuries of wind data that provided a definitive, natural record of the monsoon's intensity. The finding, published online March 28 in the journal Geophysical Research Letters, show that monsoon winds have indeed increased over the past centuries.

"The south Asian monsoon is incredibly important," said Konrad Hughen, a paleoclimatologist at WHOI and co-author on the paper. "It's one of the biggest climate systems on the planet, and supplies water for almost a billion people—yet we don't fully understand its long-term behavior. It's a very complicated system with lots of moving parts."

The problem, he added, is that historic records of rainfall are based on limited points in space with high variability, and calculating averages across a broad region is difficult. Researchers have not yet had a way to verify those records, and have limited information about weather patterns before instrumental records began.

Hughen and his colleagues were able to uncover that information thanks to the behavior of the monsoon winds themselves. One branch of the monsoon moves predominantly west to east, crossing the Sahara desert in northeast Africa, where it picks up fine dust and clay in the process. Its winds are then funneled through the Tokar Gap, a narrow mountain pass in eastern Sudan, where the dust they contain spills out into the Red Sea.

The dust picked up in the Sahara contains a form of barium that dissolves easily in seawater. Each year, corals in the Red Sea incorporate part of that barium into their skeletons as they grow, trapping within them a record of how much wind and dust blew through the gap during summer monsoons for hundreds of years.

"The barium gives us a proxy for wind," said Hughen. "The more barium we found in a layer of coral, the more wind was coming though the Tokar Gap during the year it formed. Based on those winds, we can calculate the location of the low pressure systems that caused them, and we found they were primarily over the Indian subcontinent. That confirmed the winds' connection to the monsoon"

The data in the corals seems to prove that historic records of rainfall may be missing a broader picture, Hughen said. Stronger winds would have increased moisture traveling over the Indian subcontinent, despite records showing rainfall dropping off.

"It could be that those records simply missed some of the rainfall, especially in the past when they were less reliable" he said. "Rain is highly variable from one place to another. Sometimes it's pouring just a few miles from an area that's not as wet. When you're recording rainfall at only a few fixed points, you might not be able to capture those sorts of spatial variations."

The coral records show that the strength of the monsoon is in fact increasing with time—a trend that's in keeping with existing climate models—but its variability from decade to decade is diminishing. This suggests that as the climate has warmed, monsoon circulation has become more stable, so extra-heavy winds and rains could be the "new normal" for future years rather than just an anomaly.

Also collaborating on the study were lead author Sean P. Bryan of Colorado State University and formerly a postdoctoral researcher at WHOI, J. Thomas Farrar of WHOI and Kristopher B. Karnauskas of the University of Colorado, Boulder.

This research was supported by grants to Hughen from NSF award #OCE-1031288 and KAUST award #USA00002, as well as a WHOI Postdoctoral Fellowship awarded to Sean P. Bryan. All data from the study will be made publicly available online through the NOAA NCDC Paleoclimatology data archive.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

Pakistan's 'Ocean of Water'
Interactions between Pacific and Indian Oceans influenced devastating monsoon The South Asian monsoon brings much-needed rain to the Indian subcontinent each summer. The monsoon typically lasts from mid-June to September. Posted on 3 Feb 2023
Palau's Rock Islands harbor heat-resistant corals
Finding could help reef managers to develop new defenses against ocean warming Ocean warming is driving an increase in the frequency and severity of marine heatwaves, causing untold damage to coral reefs. Posted on 24 Dec 2022
When will Antarctica's ice come crashing down?
Researchers challenge their own assumptions to improve sea-level rise predictions As increased warming in Antarctica causes glaciers to retreat and shed their increasingly-unstable shelves, towering walls of ice are left looming high above the sea. Posted on 20 Nov 2022
Can we use sound to build back reefs?
What does a healthy reef sound like? What does a healthy reef sound like? And can we use that knowledge to help save sick or endangered reefs? Posted on 13 Nov 2022
Five essential ocean-climate technologies
It's hard to overstate how profound the ocean's role is when it comes to climate change It's hard to overstate how profound the ocean's role is when it comes to climate change. It has absorbed more than 90 percent of the heat caused by greenhouse gasses since the Industrial Revolution. Posted on 13 Nov 2022
What happens to natural gas in the ocean?
Methane, the most abundant hydrocarbon in natural gas, is a potent greenhouse gas When news broke on September 26 that natural gas pipelines had ruptured under the Baltic Sea, the immediate-and appropriate-concern was the impact on the climate. Posted on 11 Oct 2022
How to study an underwater earthquake from shore
Lessons from a successful hybrid Sentry expedition A magnitude 6 earthquake along the Gofar Transform Fault in the eastern Pacific Ocean shook the seafloor in April 2020, just when a WHOI-based science team predicted. Posted on 31 Aug 2022
Seven ways you can be coral reef-safe
Lifestyle changes you can make to help corals in crisis Diving or snorkeling on a reef is your ticket to a dreamworld. Brilliant colors, fantastic shapes, and castle-like structures invite exploration, revealing bright flashes of fish and an infinite variety of life below the surface. Posted on 4 Jul 2022
World's largest kelp map launched
By Woods Hole Oceanographic Institution and collaborators Kelp forests provide myriad benefits to nature and people in oceans around the world. They form the backbone of the ecosystems in which they are found, providing habitat and food for thousands of species. Posted on 13 Apr 2022
Dissolving oil in a sunlit sea
Scientists working to understand a concept known as environmental fate The 2010 Deepwater Horizon oil spill was the largest marine oil spill in U.S. history. The disaster was caused by an explosion on the Deepwater Horizon oil rig, taking 11 lives and releasing nearly 210 million gallons of crude oil into the Gulf of Mexico. Posted on 20 Feb 2022
Hyde Sails 2022 One Design FOOTERPantaenius 2022 - SAIL & POWER 1 FOOTER ROWJ Composites J/45