Please select your home edition
Edition
Cyclops Marine 2023 November - LEADERBOARD

Microbes may act as gatekeepers of earth's deep carbon

by WHOI 28 Apr 2019 19:17 UTC
Biofilm in a natural seep in Costa Rica © Peter Barry

Two years ago an international team of scientists visited Costa Rica's subduction zone, where the ocean floor sinks beneath the continent and volcanoes tower above the surface. They wanted to find out if microbes can affect the cycle of carbon moving from Earth's surface into the deep interior. According to their new study in Nature, the answer is affirmativelyyes they can.

This groundbreaking study, published in Nature, shows that microbes consume and crucially help trap a small amount of sinking carbon in this zone. This finding has important implications for understanding Earth's fundamental processes and for revealing how nature can potentially help mitigate climate change.

At a subduction zone there is communication between Earth's surface and interior. Two plates collide and the denser plate sinks, transporting material from the surface into Earth's interior. Showing that the microbes at the near-surface are playing a fundamental role in how carbon and other elements are being locked up into the crust provides a profound new understanding of Earth processes and helps researchers model how Earth's interior may develop over time.

"What we've shown in this study is that in areas that are critically important for putting chemicals back down into the planet these big subduction zones life is sequestering carbon," said Chris Ballentine, Head of the Department of Earth Sciences at the University of Oxford and a co-author of the paper. "On geological timescales life might be controlling the chemicals at the surface and storing elements like carbon in the crust."

This is the first evidence that subterranean life plays a role in removing carbon from subduction zones. It has been well established that microbes are capable of taking carbon dissolved in water and converting it into a mineral within the rocks. The research showed that this happens on the large scale across a subduction zone. It is a natural CO2 sequestration process which can control the availability of carbon on Earth's surface.

"We found that a substantial amount of carbon is being trapped in non-volcanic areas instead of escaping through volcanoes or sinking into Earth's interior," said Peter Barry, WHOI marine chemist and lead author of the paper. Barry carried out the research while at the Department of Earth Sciences, Oxford University.

"Until this point scientists had assumed that life plays little to no role in whether this oceanic carbon is transported all the way into the mantle, but we found that life and chemical processes work together to be the gatekeepers of carbon delivery to the mantle."

During the 12-day expedition, the 25-person group of multi-disciplinary scientists collected water samples from thermal springs throughout Costa Rica. Scientists have long predicted that these thermal waters spit out ancient carbon molecules, subducted millions of years before. By comparing the relative amounts of two different kinds of carbon called isotopes the scientists showed that the predictions were true and that previously unrecognized processes were at work in the crust above the subduction zone, acting to trap large amounts of carbon.

Following their analyses, the scientists estimated that about 94 percent of that carbon transforms into calcite minerals and microbial biomass.

The researchers now plan to investigate other subduction zones to see if this trend is widespread. If these biological and geochemical processes occur worldwide, they would translate to 19 percent less carbon entering the deep mantle than previously estimated.

The research is part of the Deep Carbon Observatory's Biology Meets Subduction project. The interdisciplinary team included 25 researchers from six nations belonging to each of the Deep Carbon Observatory (DCO) Science Communities: Deep Life, Extreme Chemistry and Physics, Reservoirs and Fluxes, and Deep Energy.

Watch this video for a glimpse of the 2017 field campaign, including the final descent into Póas Volcanos active crater. Credit: Deep Carbon Observatory/CoLab Productions

Related Articles

Pakistan's 'Ocean of Water'
Interactions between Pacific and Indian Oceans influenced devastating monsoon The South Asian monsoon brings much-needed rain to the Indian subcontinent each summer. The monsoon typically lasts from mid-June to September. Posted on 3 Feb 2023
Palau's Rock Islands harbor heat-resistant corals
Finding could help reef managers to develop new defenses against ocean warming Ocean warming is driving an increase in the frequency and severity of marine heatwaves, causing untold damage to coral reefs. Posted on 24 Dec 2022
When will Antarctica's ice come crashing down?
Researchers challenge their own assumptions to improve sea-level rise predictions As increased warming in Antarctica causes glaciers to retreat and shed their increasingly-unstable shelves, towering walls of ice are left looming high above the sea. Posted on 20 Nov 2022
Can we use sound to build back reefs?
What does a healthy reef sound like? What does a healthy reef sound like? And can we use that knowledge to help save sick or endangered reefs? Posted on 13 Nov 2022
Five essential ocean-climate technologies
It's hard to overstate how profound the ocean's role is when it comes to climate change It's hard to overstate how profound the ocean's role is when it comes to climate change. It has absorbed more than 90 percent of the heat caused by greenhouse gasses since the Industrial Revolution. Posted on 13 Nov 2022
What happens to natural gas in the ocean?
Methane, the most abundant hydrocarbon in natural gas, is a potent greenhouse gas When news broke on September 26 that natural gas pipelines had ruptured under the Baltic Sea, the immediate-and appropriate-concern was the impact on the climate. Posted on 11 Oct 2022
How to study an underwater earthquake from shore
Lessons from a successful hybrid Sentry expedition A magnitude 6 earthquake along the Gofar Transform Fault in the eastern Pacific Ocean shook the seafloor in April 2020, just when a WHOI-based science team predicted. Posted on 31 Aug 2022
Seven ways you can be coral reef-safe
Lifestyle changes you can make to help corals in crisis Diving or snorkeling on a reef is your ticket to a dreamworld. Brilliant colors, fantastic shapes, and castle-like structures invite exploration, revealing bright flashes of fish and an infinite variety of life below the surface. Posted on 4 Jul 2022
World's largest kelp map launched
By Woods Hole Oceanographic Institution and collaborators Kelp forests provide myriad benefits to nature and people in oceans around the world. They form the backbone of the ecosystems in which they are found, providing habitat and food for thousands of species. Posted on 13 Apr 2022
Dissolving oil in a sunlit sea
Scientists working to understand a concept known as environmental fate The 2010 Deepwater Horizon oil spill was the largest marine oil spill in U.S. history. The disaster was caused by an explosion on the Deepwater Horizon oil rig, taking 11 lives and releasing nearly 210 million gallons of crude oil into the Gulf of Mexico. Posted on 20 Feb 2022
Marine Products Direct 2023 - Calypso FOOTEROcean Safety 2023 - New Identity - FOOTERHyde Sails 2022 One Design FOOTER