Please select your home edition
Edition
Raymarine 2021 April UK Offers - LEADERBOARD

The ocean's 'biological pump' captures more carbon than expected

by Woods Hole Oceanographic Institution 9 Apr 2020 12:53 UTC
Marine chemist Ken Buesseler (right) deploys a sediment trap from the research vessel Roger Revelle during a 2018 expedition in the Gulf of Alaska. Buesseler's research focuses on how carbon moves through the ocean. © Alyssa Santoro, Woods Hole Oceanographic Institution

Every spring in the Northern Hemisphere, the ocean surface erupts in a massive bloom of phytoplankton. Like plants, these single-celled floating organisms use photosynthesis to turn light into energy, consuming carbon dioxide and releasing oxygen in the process. When phytoplankton die or are eaten by zooplankton, the carbon-rich fragments sinks deeper into the ocean, where it is, in turn, eaten by other creatures or buried in sediments. This process is key to the "biological carbon pump," an important part of the global carbon cycle.

Scientists have long known that the ocean plays an essential role in capturing carbon from the atmosphere, but a new study from Woods Hole Oceanographic Institution (WHOI) shows that the efficiency of the ocean's "biological carbon pump" has been drastically underestimated, with implications for future climate assessments.

In a paper published April 6 in Proceedings of the National Academy of Sciences, WHOI geochemist Ken Buesseler and colleagues demonstrated that the depth of the sunlit area where photosynthesis occurs varies significantly throughout the ocean. This matters because the phytoplankton's ability to take up carbon depends on amount of sunlight that's able to penetrate the ocean's upper layer. By taking account of the depth of the euphotic, or sunlit zone, the authors found that about twice as much carbon sinks into the ocean per year than previously estimated.

The paper relies on previous studies of the carbon pump, including the authors' own. "If you look at the same data in a new way, you get a very different view of the ocean's role in processing carbon, hence its role in regulating climate," says Buesseler.

"Using the new metrics, we will be able to refine the models to not just tell us how the ocean looks today, but how it will look in the future," he adds. "Is the amount of carbon sinking in the ocean going up or down? That number affects the climate of the world we live in."

In the paper, Buesseler and his coauthors call on their fellow oceanographers to consider their data in context of the actual boundary of the euphotic zone.

"If we're going to call something a euphotic zone, we need to define that," he says. "So we're insisting on a more formal definition so that we can compare sites."

Rather than taking measurements at fixed depths, the authors used chlorophyll sensors —indicating the presence of phytoplankton— to rapidly assess the depth of the sunlit region. They also suggest using the signature from a naturally-occuring thorium isotope to estimate the rate at which carbon particles are sinking.

Buesseler is a principal investigator with WHOI's Ocean Twilight Zone project, which focuses on the little-understood but vastly important mid-ocean region. In a commentary published in Nature on March 31, Buesseler and colleagues call on the international marine research community to intensify their studies of the twilight zone during the upcoming United Nations Decade of the Ocean (2021-2030). Increased understanding of the twilight zone ecosystem and its role in regulating climate, the authors say, will lead to global policy to protect the area from exploitation.

Coauthors of the paper include: Phillip Boyd of University of Tasmania, Australia; Erin Black of Dalhousie University, Nova Scotia, and Lamont Doherty Earth Observatory, New York; and David Siegel, University of California, Santa Barbara.

This work was funded by: WHOI's Ocean Twilight Zone project; NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program; the Ocean Frontier Institute at Dalhousie University; and the Australian Research Council.

For more information, please visit www.whoi.edu.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

Northern Star Coral study could help protect coral
Rhode Island considers naming the local coral as a State Emblem Researchers are finding that studying this local creature's recovery from a laboratory-induced stressor could help better understand how to protect endangered tropical corals. Posted on 15 Apr
Can icebergs be towed to water-starved cities?
It may sound like science fiction, but it's something WHOI geologist Alan Condron is contemplating The 1.5-million-ton behemoth was on the loose. The massive blue-tinged iceberg was headed straight for an offshore drilling platform in the Kara Sea off Western Siberia. Posted on 24 Jan
Comprehensive look at marine pollution
Ocean pollution is a complex mix of chemicals and materials Paper finds ocean pollution is a complex mix of chemicals and materials, primarily land-based in origin, with far-reaching consequences for environmental and human health, but there are options available for world leaders. Posted on 19 Dec 2020
Scientists call for decade of concerted effort
Partnerships among scientists across multiple nations to share resources and knowledge The deep ocean - vast expanses of water and seafloor more than 200 meters (660 feet) below the surface - are globally recognized as an important frontier of exploration and research. Posted on 30 Nov 2020
Epic Arctic mission ends
The German icebreaker Polarstern returned to its home port The German icebreaker Polarstern returned to its home port Oct. 12, 2020, after being frozen near the top of the world for nearly a year. Posted on 17 Oct 2020
Ocean acidification causing coral 'osteoporosis'
A global-scale investigation of coral CT scans could help to target protections for vulnerable reefs Scientists have long suspected that ocean acidification is affecting corals' ability to build their skeletons, but it has been challenging to isolate its effect from that of simultaneous warming ocean temperatures, which also influence coral growth. Posted on 29 Aug 2020
Uncharted Waters
Our global ocean will change dramatically over the next few decades Our global ocean will change dramatically over the next few decades. What might it look like, and how will humans adapt? Posted on 19 Jul 2020
The many lifetimes of plastics
How long plastics last in the environment? Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment. Posted on 20 Jun 2020
A win for both lobstermen and endangered whales
Fishing with less gear and a shorter season could make the U.S. lobster fishery more profitable A new study by researchers at Woods Hole Oceanographic Institution (WHOI) found that New England's historic lobster fishery may turn a higher profit by operating with less gear in the water and a shorter season. Posted on 31 May 2020
What did scientists learn from deepwater horizon?
Major findings and technological advances Paper reviews major findings, technological advances that could help in next deep-sea spill. Ten years ago, a powerful explosion destroyed an oil rig in the Gulf of Mexico, killing 11 workers and injuring 17 others. Posted on 27 Apr 2020
Upffront 2020 Foredeck Club SW FOOTERNorth Sails 2019 - NSVictoryList - FooterHighfield Boats - SWC - FOOTER