Please select your home edition
Edition
A+T Instruments 2024 Leaderboard

Time running out to save coral reefs

by Melissa Lyne 13 May 2021 05:18 UTC
Saving coral reefs requires immediate and drastic reductions in global carbon emissions. Photo of bleached reef at Yamacutta Flat © Morgan Pratchett

New research on the growth rates of coral reefs shows there is still a window of opportunity to save the world's coral reefs - but time is running out.

The international study was initiated at the ARC Centre of Excellence for Coral Reef Studies (Coral CoE), which is headquartered at James Cook University (JCU).

Co-author Professor Morgan Pratchett from Coral CoE at JCU said the results show that unless carbon dioxide emissions are drastically reduced the growth of coral reefs will be stunted.

"The threat posed by climate change to coral reefs is already very apparent based on recurrent episodes of mass coral bleaching," Prof Pratchett said. "But changing environmental conditions will have other far-reaching consequences."

Co-author Professor Ryan Lowe, from Coral CoE at The University of Western Australia (UWA), said modern coral reef structures reflect a balance between a wide range of organisms that build reefs, not just corals. This includes coralline algae—a rock-hard alga that bind reefs together.

"While the responses of individual reef organisms to climate change are increasingly clear, this study uniquely examines how the complex interactions between diverse communities of organisms responsible for maintaining present day coral reefs will likely change reef structures in the future," Prof Lowe said.

The joint lead authors, Dr Christopher Cornwall and Dr Steeve Comeau (who are now at Victoria University of Wellington and Sorbonne Université CNRS Laboratoire d'Océanographie de Villefranche sur Mer, respectively) calculated how coral reef growth is likely to react to ocean acidification and warming under three different climate-change carbon dioxide scenarios: low, medium and worst-case.

The findings suggest that under an intermediate emissions scenario, some reefs may even keep pace with sea-level rise by growing—but only for a short while.

"All reefs around the world will be eroding by the end of the century under the intermediate scenario," said co-author Dr Scott Smithers, from JCU. "This will obviously have serious implications for reefs, reef islands, as well as the people and other organisms depending upon coral reefs."

The study gives broader projections of ocean warming and acidification—and their interaction—on the net carbonate production of coral reefs.

Warming oceans bring more marine heatwaves, which cause mass coral bleaching. Ocean acidification affects the ability of calcifying corals to form their calcium carbonate skeletons, a process called 'calcification'. Warming waters also reduce calcification.

The data in the study include net calcification, bioerosion and sediment dissolution rates measured or collated from 233 locations across 183 distinct reefs. 49% of the reefs were in the Atlantic Ocean, 39% in the Indian Ocean and 11% in the Pacific Ocean.

These were then modelled against three Intergovernmental Panel on Climate Change emissions scenarios for low, medium and high-impact outcomes on ocean warming and acidification for 2050 and 2100.

The projections show that even under the low-impact case, reefs will suffer severely reduced growth, or accretion, rates.

"While 63% of reefs are projected to continue to accrete by 2100 under the low-impact pathway, 94% will be eroding by 2050 under the worse-case scenario," Dr Cornwall said. "And no reef will continue to accrete at rates matching projected sea-level rise under the medium and high-impact scenarios by 2100."

"Our study shows changing environmental conditions challenge the growth of reef-building corals and other calcifying organisms, which are important in maintaining the structure of reef systems," Prof Pratchett said.

"Saving coral reefs requires immediate and drastic reductions in global carbon emissions."

Paper

Cornwall C, Comeau S, Korndere N, Perry C, Van Hooidon R, DeCarlo T, Pratchett M, Anderson K, Browne N, Carpenter R, Diaz-Pulidoo G, D'Olivo J, Doo S, Figueiredo J, Fortunato S, Kennedy E, Lantz C, McCulloch M, González-Rivero M, Schoepf V, Smithers S, Lowe R. 2021. 'Global declines in coral reef calcium carbonate production under ocean acidification and warming'. PNAS. DOI: 10.1073/pnas.2015265118

Related Articles

DNA reveals the past and future of coral reefs
New DNA techniques are being used to understand how coral reacted to the end of the last ice age New DNA techniques are being used to understand how coral reacted to the end of the last ice age in order to better predict how they will cope with current changes to the climate. Posted on 22 Oct 2022
The double burden of climate change
A new study on the effects of climate change in five tropical countries A new study on the effects of climate change in five tropical countries has found fisheries are in more trouble than agriculture, and poor people are in the most danger. Posted on 9 Jul 2022
Fade to grey
Fish communities become duller as coral reefs die James Cook University researchers have found brightly coloured fish are becoming increasingly rare as coral declines, with the phenomenon likely to get worse in the future. Posted on 26 Mar 2022
Concerns as development threatens reefs
A stark warning about the impacts of urban growth on the world's coral reefs A new study has delivered a stark warning about the impacts of urban growth on the world's coral reefs. Posted on 10 Mar 2022
New data shows coral everywhere face catastrophe
The refuges will provide almost no escape Alarming new research shows global warming of 1.5 degreesC relative to pre-industrial levels will be catastrophic for almost all coral reefs - including those once thought of as refuges. Posted on 4 Feb 2022
Coral identity crisis
A new way to distinguish and identify coral species Researchers have found a new way to distinguish and identify coral species—providing crucial information to help manage coral reefs in a warming world. Posted on 30 Nov 2021
Corals roll with the punches
Corals may be able to cope with climate change in the coming decades A new study suggests corals may be able to cope with climate change in the coming decades better than previously thought- but will still struggle with ever-faster rates of climate change. Posted on 8 Sep 2021
Measuring conservation in a way that counts
The term 'save' in conservation needs to be better defined A new study raises questions on whether current conservation science and policy for protected areas could be saving more biodiversity—with political and economic expediency often having taken precedence in the past. Posted on 30 Jul 2021
More 'fairness' needed in conservation
A new approach is needed if protected areas are to be effective New research shows what is often assumed to be 'fair' in conservation practice may not be considered so by the very people most affected by it—and a new approach is needed if protected areas are to be effective. Posted on 12 Jun 2021
Half a trillion corals
World-first coral count prompts rethink of extinction risks For the first time, scientists have assessed how many corals there are in the Pacific Ocean—and evaluated their risk of extinction. Posted on 3 Mar 2021
Cure Marine - Cure 55 - FOOTERMarine Products Direct 2023 - Calypso FOOTERNorth Sails Performance 2023 - FOOTER