Please select your home edition
GJW Direct 2020

How marine predators find food hot spots in open ocean “deserts”

by The Woods Hole Oceanographic Institution 13 Sep 19:16 UTC
The striped marlin (Kajikia audax) is a species of billfish that is overfished in the North Pacific. A new study co-led by WHOI finds that marine predators, like the striped marlin, aggregate in anticyclonic, clockwise-rotating ocean eddies to feed © Pat Ford

Woods Hole Oceanographic Institution study suggests relationship between predator foraging and the ocean's "internal weather" in the North Pacific Subtropical Gyre.

A new study led by scientists at Woods Hole Oceanographic Institution (WHOI) and University of Washington Applied Physics Laboratory (UW APL) finds that marine predators, such as tunas, billfishes and sharks, aggregate in anticyclonic, clockwise-rotating ocean eddies (mobile, coherent bodies of water). As these anticyclonic eddies move throughout the open ocean, the study suggests that the predators are also moving with them, foraging on the high deep-ocean biomass contained within.

The findings were published in Nature.

"We discovered that anticyclonic eddies - rotating clockwise in the Northern Hemisphere - were associated with increased pelagic predator catch compared with eddies rotating counter-clockwise and regions outside eddies," said Dr. Martin Arostegui, WHOI postdoctoral scholar and paper lead-author. "Increased predator abundance in these eddies is probably driven by predator selection for habitats hosting better feeding opportunities."

The study included collaborators from the National Oceanic and Atmospheric Administration's (NOAA) Pacific Islands Fisheries Science Center. It focused on more than 20 years of commercial fishery and satellite data collected from the North Pacific Subtropical Gyre - a vast region that is nutrient-poor but supports predator fishes that are central to the economic and food security of Pacific Islands nations and communities.

The research team assessed an ecologically diverse community of predators varying in latitudes, ocean depths, and physiologies (cold vs. warm-blooded).

Although there is a growing body of research showing that diverse predators associate with eddies, this is the first study to focus on the subtropical gyre - which is the largest ecosystem on Earth. The research team was able to investigate predator catch patterns with respect to the eddies, concluding that eddies influence open ocean ecosystems from the bottom to the top of the food chain. This discovery suggests a fundamental relationship between predator foraging opportunities and the underlying physics of the ocean.

"The idea that these eddies contain more food means they're serving as mobile hotspots in the ocean desert that predators encounter, target and stay in to feed," said Arostegui.

Scientists have long studied isolated predator behaviors in other regions of the ocean, tagging animals and tracking their dive patterns to food-rich ocean layers, such as the ocean twilight zone (mesopelagic); but an understanding of how eddies influence behavior of open ocean predators, specifically in food-scarce areas like subtropical gyres should inform effective management of these species, their ecosystems and dependent fisheries.

This study's findings highlight the connection between the surface and deep ocean, which must be considered in impact assessments of future deep-sea industries. As deep-sea prey fisheries continue to expand, there comes the need for more information on deep-sea ecology, particularly how much deep-prey biomass can be harvested by fisheries without negatively affecting dependent predators or the ocean's ability to store carbon and regulate the climate. A better understanding of the ecosystem services provided by the deep ocean via eddies, particularly with respect to predator fisheries, will help inform responsible use of deep-ocean resources.

"The ocean benefits predators, which then benefit humans as a food source," Arostegui said. "Harvesting the food that our food eats, is something we need to understand in order to ensure the methods are sustainable for both the prey and the predators that rely on them. That is critical to ensuring both ocean health and human wellbeing as we continue to rely on these animals for food."

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

When will Antarctica's ice come crashing down?
Researchers challenge their own assumptions to improve sea-level rise predictions As increased warming in Antarctica causes glaciers to retreat and shed their increasingly-unstable shelves, towering walls of ice are left looming high above the sea. Posted on 20 Nov
Can we use sound to build back reefs?
What does a healthy reef sound like? What does a healthy reef sound like? And can we use that knowledge to help save sick or endangered reefs? Posted on 13 Nov
Five essential ocean-climate technologies
It's hard to overstate how profound the ocean's role is when it comes to climate change It's hard to overstate how profound the ocean's role is when it comes to climate change. It has absorbed more than 90 percent of the heat caused by greenhouse gasses since the Industrial Revolution. Posted on 13 Nov
What happens to natural gas in the ocean?
Methane, the most abundant hydrocarbon in natural gas, is a potent greenhouse gas When news broke on September 26 that natural gas pipelines had ruptured under the Baltic Sea, the immediate-and appropriate-concern was the impact on the climate. Posted on 11 Oct
How to study an underwater earthquake from shore
Lessons from a successful hybrid Sentry expedition A magnitude 6 earthquake along the Gofar Transform Fault in the eastern Pacific Ocean shook the seafloor in April 2020, just when a WHOI-based science team predicted. Posted on 31 Aug
Seven ways you can be coral reef-safe
Lifestyle changes you can make to help corals in crisis Diving or snorkeling on a reef is your ticket to a dreamworld. Brilliant colors, fantastic shapes, and castle-like structures invite exploration, revealing bright flashes of fish and an infinite variety of life below the surface. Posted on 4 Jul
World's largest kelp map launched
By Woods Hole Oceanographic Institution and collaborators Kelp forests provide myriad benefits to nature and people in oceans around the world. They form the backbone of the ecosystems in which they are found, providing habitat and food for thousands of species. Posted on 13 Apr
Dissolving oil in a sunlit sea
Scientists working to understand a concept known as environmental fate The 2010 Deepwater Horizon oil spill was the largest marine oil spill in U.S. history. The disaster was caused by an explosion on the Deepwater Horizon oil rig, taking 11 lives and releasing nearly 210 million gallons of crude oil into the Gulf of Mexico. Posted on 20 Feb
The ocean twilight zone's role in climate change
WHOI releases report analyzing carbon sequestration in the mid-ocean region The ocean twilight zone, also called the mid-water or the mesopelagic, lies far beneath the sunlit surface waters, about 650 to 3,300 feet deep to be exact. Posted on 19 Feb
WHOI shares microplastic detection project details
Project gains additional funding, technologies to move towards a field-portable sensing system Microplastics are tiny plastic pieces that can be found in the ocean and atmosphere. Posted on 20 Jan
J Composites 2022 - J99 FOOTERNoble Marine 2022 SW - FOOTERPantaenius 2022 - SAIL & POWER 1 FOOTER ROW