Please select your home edition
Edition
2024 fill-in (top)

Tiny fish live fast, die young

by Melissa Lyne 30 May 2019 07:16 UTC
Redeye Gobies ( Bryaninops natans ) hover in small groups above coral heads, on which they rely for shelter. By living fast and dying young, these tiny (<2cm) fishes fuel reef fish biomass production © Tane Sinclair-Taylor

New research has revealed that the short lives and violent deaths of some of coral reefs' smallest tenants may be vital to the health of reef systems, including the iconic Great Barrier Reef.

Dr Simon Brandl, from Simon Fraser University in Canada, led an international team of researchers searching for answers to the longstanding puzzle of 'Darwin's paradox'.

Co-author Prof David Bellwood from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University (JCU) said: "Charles Darwin wondered how fish on coral reefs manage to thrive in isolated areas where there are very low levels of nutrients for them to use. We thought the answer may lie in the tiny fish that live in the gaps in the coral structure."

"These tiny fish are less than five centimetres long and are known as 'cryptobenthics'. They include gobies, blennies, cardinalfish, and several other families," Prof Bellwood said.

The team surveyed reefs around the globe and records of larval abundance. They discovered that cryptobenthics and their larvae make up nearly 60% of all fish flesh eaten on the reef.

"Because of their size and tendency to hide, these little fish are commonly overlooked," Dr Brandl said, "but their unique demographics make them a cornerstone of the ecosystem."

"Their populations are completely renewed seven times a year, with individuals in some species living only a few days before they are eaten. The only way they can sustain this is by a spectacular supply of local larvae," added co-author Renato Morais, a PhD student at JCU.

Prof Bellwood said almost anything capable of eating cryptobenthics does so, including juvenile fish and invertebrates such as mantis shrimps, which then became food for other creatures.

"These factors have made it hard for researchers in the past to realise the importance of cryptobenthics and discover the food supply that the 'crypto-pump' supplies."

He said that the cryptobenthics have finally emerged from the shadows. "Their extraordinary larval dynamics, rapid growth, and extreme mortality underpins their newly discovered role as a critical functional group on coral reefs."

Paper: Brandl S, Tornabene L, Goatley C, Casey J, Morais R, Cote I, Baldwin C, Parravicini V, Schiettekatte N, Bellwood D (2019). 'Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning'. Science. DOI: 10.1126/science.aav3384

More information available here.

Related Articles

DNA reveals the past and future of coral reefs
New DNA techniques are being used to understand how coral reacted to the end of the last ice age New DNA techniques are being used to understand how coral reacted to the end of the last ice age in order to better predict how they will cope with current changes to the climate. Posted on 22 Oct 2022
The double burden of climate change
A new study on the effects of climate change in five tropical countries A new study on the effects of climate change in five tropical countries has found fisheries are in more trouble than agriculture, and poor people are in the most danger. Posted on 9 Jul 2022
Fade to grey
Fish communities become duller as coral reefs die James Cook University researchers have found brightly coloured fish are becoming increasingly rare as coral declines, with the phenomenon likely to get worse in the future. Posted on 26 Mar 2022
Concerns as development threatens reefs
A stark warning about the impacts of urban growth on the world's coral reefs A new study has delivered a stark warning about the impacts of urban growth on the world's coral reefs. Posted on 10 Mar 2022
New data shows coral everywhere face catastrophe
The refuges will provide almost no escape Alarming new research shows global warming of 1.5 degreesC relative to pre-industrial levels will be catastrophic for almost all coral reefs - including those once thought of as refuges. Posted on 4 Feb 2022
Coral identity crisis
A new way to distinguish and identify coral species Researchers have found a new way to distinguish and identify coral species—providing crucial information to help manage coral reefs in a warming world. Posted on 30 Nov 2021
Corals roll with the punches
Corals may be able to cope with climate change in the coming decades A new study suggests corals may be able to cope with climate change in the coming decades better than previously thought- but will still struggle with ever-faster rates of climate change. Posted on 8 Sep 2021
Measuring conservation in a way that counts
The term 'save' in conservation needs to be better defined A new study raises questions on whether current conservation science and policy for protected areas could be saving more biodiversity—with political and economic expediency often having taken precedence in the past. Posted on 30 Jul 2021
More 'fairness' needed in conservation
A new approach is needed if protected areas are to be effective New research shows what is often assumed to be 'fair' in conservation practice may not be considered so by the very people most affected by it—and a new approach is needed if protected areas are to be effective. Posted on 12 Jun 2021
Time running out to save coral reefs
A window of opportunity to save the world's coral reefs - but time is running out New research on the growth rates of coral reefs shows there is still a window of opportunity to save the world's coral reefs - but time is running out. Posted on 13 May 2021
Marine Products Direct 2023 - Calypso FOOTERJ Composites J/99Pantaenius 2022 - SAIL FOOTER - ROW